ON QUASI-ABELIAN VARIETIES OF KIND k

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures of Simultaneous Approximation for Quasi-periods of Abelian Varieties

Theorem 1.1 (Chudnovsky’s theorems). Let Λ = Zω+Zω′ ⊂ C be a lattice with invariants g2, g3, Weierstrass functions ℘, ζ and quasi-periods η, η′, all defined in the usual way (see [Sil94]). Each of the sets below contains at least two algebraically independent numbers : first (1) {g2, g3, η ω , π ω}, (2) {g2, g3, ω, η, ω′, η′}; if we assume g2, g3 ∈ Q̄ : (3) { η ω , π ω}, (4) {ω, ω′, η, η′}; and ...

متن کامل

Regularity on abelian varieties

I will introduce the notion of Mukai regularity for coherent sheaves on abelian varieties, defined via conditions on the supports of the cohomologies of Fourier-Mukai transform complexes. In a very special form, depending on the choice of a polarization, this resembles and in fact strenghtens the classical notion of Castelnuovo-Mumford regularity. The techniques are in part a generalization of ...

متن کامل

Hodge cycles on abelian varieties

This is a TeXed copy of – Hodge cycles on abelian varieties (the notes of most of the seminar “Périodes des Intégrales Abéliennes” given by P. Deligne at I.H.E.S., 1978–79; pp9– 100 of Deligne et al. 1982). somewhat revised and updated. See the endnotes1 for more details.

متن کامل

Abelian Points on Algebraic Varieties

We attempt to determine which classes of algebraic varieties over Q must have points in some abelian extension of Q. We give: (i) for every odd d > 1, an explicit family of degree d, dimension d − 2 diagonal hypersurfaces without Qab-points, (ii) for every number field K, a genus one curve C/Q with no K ab-points, and (iii) for every g ≥ 4 an algebraic curve C/Q of genus g with no Qab-points. I...

متن کامل

Lefschetz Classes on Abelian Varieties

Then C∼(X) df = ⊕sC ∼(X) becomes a graded Q-algebra under the intersection product, and we define D∼(X) to be the Q-subalgebra of C∼(X) generated by the divisor classes: D∼(X) = Q[C ∼(X)]. The elements of D∼(X) will be called the Lefschetz classes on X (for the relation ∼). They are the algebraic classes on X expressible as linear combinations of intersections of divisor classes (including the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 2006

ISSN: 1340-6116

DOI: 10.2206/kyushujm.60.305